From Uni-Core to Many-Core, the Splendor of DAS-1 to 4

John W. Romein

Netherlands Institute for Radio Astronomy (ASTRON)
Dwingeloo, the Netherlands
Overview

- my experience with DAS-1
- my experience with DAS-2
- my experience with DAS-3
- my experience with DAS-4
Volkskrant, 17-8-'01
Solving the Game of Awari
Solving The Game of Awari

- popular African board game
- rules:
 - sow stones
 - capture stones
 - winner: >24 stones
- solve:
 - assume optimal play
 - minimax
 - determine score of 889,063,398,406 positions
Solving The Game of Awari

- compute database
 - entry = board score
 - partitioned
- upgraded DAS-2@VU memory
 - 2 bits/entry → DRAM
 - 7 bits/entry → disk
- retrograde analysis
 - remote lookup
 - move computation
 - never wait!
Solving The Game of Awari

- 72 DAS-2 nodes: 51 hours
 - 1 DAS-4 node: 12 hours ...
- result: draw
- web server (5 disks)
- “1 of the 250 Milestones in the History of Mathematics” [C.A. Pickover, the Math book]
Volkskrant, 17-8-'01
The LOFAR Radio Telescope

- largest low-frequency telescope
- distributed sensor network
 - ~85,000 receivers
LOFAR SuperTerp
LOFAR: A **Software Telescope**

- different observation modes require **flexibility**
 - standard imaging
 - pulsar survey
 - known pulsar
 - epoch of re-ionization
 - transients
 - ultra-high energy particles
 - ...
- digitally steered
- concurrent observations
- Blue Gene supercomputer
- real time
LOFAR Data Processing

stations in the field

Blue Gene/P supercomputer
LOFAR Central Processing

- complex software
- several pipelines
- 85-96% efficiency!
- use DAS to develop new functionality
What's Next?
the Square Kilometre Array

- world-wide effort
- unprecedented size
- South Africa + Australia
 - 2016–2019: 10% SKA
 - 2020–2023: 100% SKA
- exascale computing; petascale I/O
 - $O(10^4)–O(10^5) > \text{LOFAR}$
- many challenges!
research challenges of the SKA

2012–2017

31,9 M€ project
 (Min. EL&I, prov. Drenthe)

use DAS-4

<table>
<thead>
<tr>
<th>P1</th>
<th>algorithms & machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>nanophotonics</td>
</tr>
<tr>
<td>P3</td>
<td>access patterns</td>
</tr>
<tr>
<td>P4</td>
<td>microservers</td>
</tr>
<tr>
<td>P5</td>
<td>accelerators</td>
</tr>
<tr>
<td>P6</td>
<td>compressed sampling</td>
</tr>
<tr>
<td>P7</td>
<td>real-time communication</td>
</tr>
</tbody>
</table>
Many-Core Research

- accelerators for (radio-astronomical) signal processing
 - GPUs, Xeon Phi, BG/Q, FPGAs, ...
- fundamental understanding of accelerators
 - which properties make architecture (in)efficient?
 - I/O-compute balance?
 - energy efficiency?
 - programmability?
 - architecture-(in)dependent optimizations?
 - devise new algorithms?
 - generic approach to program accelerators, or ad-hoc?
- applications:
 1) LOFAR, AARTFAAC, ...
 2) SKA
Blue Gene/P Algorithms \rightarrow GPUs

- port to GPUs
 1) LOFAR BG/P replacement
 2) code base for accelerator research
- prototype on DAS-4
Implemented Kernels
Compute Performance

![Compute Performance Graph]

- **FIR filter**
- **FFT**
- **Delay/correlator**
- **Beam former (6x3, local)**
- **Beam former (16x1, global)**
- **Transpose**
- **Inv. FIR filter**
- **Inv. FFT**
- **Trigger**

GHLOPS

- **HD6970 (max)**
- **HD6970 (min)**
- **HD7970 (max)**
- **HD7970 (min)**
- **GTX580 (max)**
- **GTX580 (min)**
- **GTX680 (max)**
- **GTX680 (min)**
- **K10 (max)**
- **K10 (min)**
AARTFAAC

- all-sky monitor
 - transients
 - 1 image/s
- correlate 288 LOFAR superterp dipoles
 - use LOFAR correlator on DAS-4
 - world record \#individual receivers! (41,616 pairs)
 - 21 nodes; 3x slower than real time
- now developing real-time GPU correlator
 - eventually: FPGAs
correlate 288 dual-pol receivers

AMD FirePro S10000:
😊 computations extremely fast
😢 has driver issues
Creation of Sky Images on GPUs
Imaging

- correlator output \rightarrow sky image
 - convolve correlations and add to grid
 - lots of memory I/O!
 - 2D FFT \rightarrow sky image
Previous GPU Work

- MWA (Edgar et. al. [CFC'11])
- van Amesfoort et. al. [CF'09]
- Humphreys & Cornwell [SKA'11]

- estimated performance on GTX-680
- ~3% of peak
Why Is This An Issue?

<table>
<thead>
<tr>
<th></th>
<th>TFLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOFAR (2012)</td>
<td>~30</td>
</tr>
<tr>
<td>10% SKA (2016)</td>
<td>~30,000</td>
</tr>
<tr>
<td>Full SKA (2020)</td>
<td>~1,000,000</td>
</tr>
</tbody>
</table>

cannot afford 3% efficiency
New GPU Imaging Algorithm

- reduces memory I/O
- unintuitive
- ~10x faster [ICS'12]
Our OpenCL Work
OpenCL vs. CUDA

<table>
<thead>
<tr>
<th>OpenCL advantages</th>
<th>disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>vendor independent</td>
<td>poor library support</td>
</tr>
<tr>
<td>runtime compilation</td>
<td>cannot use all GPU features</td>
</tr>
<tr>
<td>CPU: C++ exceptions</td>
<td></td>
</tr>
<tr>
<td>GPU: swizzling</td>
<td></td>
</tr>
</tbody>
</table>
OpenCL vs. CUDA

<table>
<thead>
<tr>
<th>OpenCL advantages</th>
<th>disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>vendor independent</td>
<td>poor library support</td>
</tr>
<tr>
<td>runtime compilation</td>
<td>cannot use all GPU features</td>
</tr>
<tr>
<td>CPU: C++ exceptions</td>
<td>NVIDIA dropped OpenCL support!!!</td>
</tr>
<tr>
<td>GPU: swizzling</td>
<td></td>
</tr>
</tbody>
</table>

OpenCL advantages
- vendor independent
- runtime compilation
- CPU: C++ exceptions
- GPU: swizzling

disadvantages
- poor library support
- cannot use all GPU features
- **NVIDIA dropped OpenCL support!!!**
OpenCL on Top of CUDA RTS

- fool CUDA RTS
- CPU: implement our own “platform” (ICD)
 - OpenCL library calls ➜ CUDA library calls
 - limited subset (proof of concept)
- GPU: use OpenCL ➜ PTX compiler (clc/clang/llvm)
 - efficient
 - does not support full language
- advantages:
 - can use visual profiler
 - use cuFFT etc.
 - more RTS control
OpenCL on Top of CUDA RTS
Current/Future Work on DAS-4

- accelerator research
- OpenCL on FPGAs
 - Altera
- OpenCL on top of CUDA
- LOFAR Blue Gene/P correlator port → GPU cluster
 - + AARTFAAC correlator
 - + new observation modes
- ...

Conclusions

- solved Awari
- use DAS-4 for (accelerator) research
 - correlator etc.; imaging
 - LOFAR, AARTFAAC, SKA
- DAS increasingly important!
Job Openings!

- www.dome-exascale.nl ➔ careers
- www.astron.nl ➔ careers ➔ jobs